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ABSTRACT 

In many electronic devices, linear feedback shift register (LFSR) is used for generating 

pseudo-random numbers, pseudo-noise sequences and fast digital counters. So for high 

performance applications LFSR should generate efficient sequences. The efficient 

sequences can be generated in so many methods. The aim of the paper is to compare 

various LFSR implementations in the standard polynomials. The practical guidelines to 

choose the optimum LFSR design for pseudo-random generator was provided. The 

comparison of various LFSR implementations in different polynomial was analyzed. The 

design was simulated and synthesized using synopsys verilog compiler simulator and 

cadence register transfer language compiler and cadence encounter tool was used for 

application specific integrated circuit implementation. On comparing with different LFSR 

implementation, the Fibonacci model offer significant advantage in terms of minimum 

power and area.   
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Introduction 
An LFSR is a shift register whose input bit is 
driven by the XOR of some bits of the overall 
shift register value (Koopman and Chakravarty, 
2004). The initial value of the LFSR is called the 
seed, because the operation of the register is 
deterministic, the stream of values produced by 
the register is completely determined by its 
current (or previous) state. Likewise, the register 
has a finite number of possible states; it must 
eventually enter a repeating cycle. However, an 
LFSR with a well-chosen feedback function can 
produce a sequence of bits, which appears 
random and, which has a very long cycle (Martin 
and Steve, 2011). The aim of the paper is to 
compare various LFSR implementations in the 
standard polynomials like USB-5, CRC-16-IBM 
and CRC-32. The analysis is based upon the 
product of power and area (P-A). 
 

Selection of Polynomial 
The selection of polynomial determines the size 
and the taps of the shift register.  
 

CRC-5-USB 
5-bit CRC polynomial is used for providing error 
detection for Universal Serial Bus (USB) tokens 
and by an ITU standard for telecommunication 
systems (Koopman and Chakravarty, 2004). The 
USB 5-bit CRC standard, “USB-5,” is a 
hexadecimal value 0x12 = x^5 + x^3 + 1. This 
polynomial is used by USB to protect data words 
of length 11 bits. USB-5 is optimal for 11-bit 
messages, and is nearly optimal for longer data 
word lengths. It is, however, not necessarily a 
good choice for data words sized 10 and lower, 
because it is a full bit of HD worse than the 
bound. 

 

CRC-16-IBM 
The CRC-16-IBM is represented as x^16+x^15+ 
x^2+1 and its hexadecimal value is 0xC002 

(Peter, 2015). All single and double-bit errors 
can be detected using this type CRC and 
ensures detection of 99.998% of all possible 
errors. This level of detection is considered 
sufficient for data transmission blocks of 4 
kilobytes or less. 
 
CRC-32 
Accidental data changes can be detected using 
CRC-32.  These polynomials are commonly 
used in networks and storage devices 
(Koopman, 2002). The purpose of this algorithm 
is not only focused to protect against 
intentionally changes, but also to catch 
accidental changes like network errors, disks 
write errors, etc. The emphasis of this algorithm 
is those more on speed than on security. The 
hexadecimal value for CRC-32 is 0x82608EDB 
and its polynomial representation is: 
 
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+
x^8+x^7+x^5+x^4+x^2+x^1+1. 

Based on the above case study, each 
polynomial has specific problems. One problem 
is that some polynomials provide very poor error 
detection capabilities. A secondly even a good 
polynomial will go wrong when misused for 
messages of a various lengths. 

Table 1 shows the uses and representation of 
polynomials. Therefore, selection of a good 
polynomial must not only involve on the size, but 
also the size of the data word. Moreover, many 
commonly used polynomials are poorly suited to 
some other applications. Therefore, suitable 
polynomial for each application has to be 
chosen. 

 
 

 
 
Table 1.Uses and representation of polynomial 
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Mehods of LFSR Implementation  

CRC  
Cyclic redundancy check (CRC) is an error 
detecting code, which is used to detect 
correction in the block of transmitted data or 
stored data. The linear feedback shift register 
(LFSR) is the generic inexpensive hardware 
used for the CRC, which assumes serial data 
input.  The used polynomial determines the 
capability of the error detection. The 
performance of the polynomial is affected by the 
data, its length as well as the anticipated error 
patterns (Martin and Steve, 2011)). Different 
applications might favor different polynomials. 

The register needs to be cleared initially in order 
to obtain the CRC. After the injection of the 
message and additional zeros, the specific CRC 
will be hold by the register. The same procedure 
can be applied at the receiver end to verify the 
received message with its appended CRC. The 
only difference is that the CRC will be shifted 
into the circuit instead of the zeros. The register 
finally becomes zero, if no error has been 
detected.  Fig. 1 shows the CRC representation 
using USB 5 polynomial. 

 

Figure 1: CRC representation using USB 5 
polynomial 

 

Galois Model  
In the Galois model, bits that are not taps are 
shifted one position to the right unchanged, 
when the system is clocked. The taps and 
output are XOR'd before they are stored in the 
next position [5]. The new output bit is the input 
to the next bit. Due to this when the output bit is 
zero all the bits in the register shift to the right 
unchanged, and the input bit becomes zero. 
When the output bit is one, the bits in the tap 
positions all flip and then the entire register is 
shifted to the right and the input bit becomes 1. 
Fig. 2 infers the USB 5 polynomial 
implementation using Galois’s model.  

 

Figure 2: Galois representation using USB 5 
polynomial 
 
Fibonacci Model 
Fig. 3 shows that the LFSR in the Fibonacci 
configuration has several been tapped cells 
(Pritish and Sadawarte, 2015). The contents of 
the tapped cells are added, and the sum 
(modulo 2) is returned to the first cell of the shift 
register for a clock cycle. In Fibonacci model the 
corresponding connection polynomial is 
irreducible. 

 
 
Name 

 
Uses 

Polynomial Representation 

Normal Reversed 
Reversed 
Reciprocal 

CRC -5-USB USB token packets 0x05 0x14 0x12 
 
CRC-16-IBM 

Bisync, Modbus, USB 0x8005 0xA001 0xC002 

CRC-32 
HDLC, ANSI X3.66, ITU-T 
V.42, Ethernet, Serial ATA 

0x04C11DB7 0xEDB88320 0x82608EDB 
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Figure 3: Fibonacci representation using USB 5 
polynomial 
 
Additive Scrambler 
Additive scramblers are also referred to be as 
synchronous. It transforms the input data stream 
by applying a pseudo-random binary sequence 
(PRBS). It follows modulo-two addition. More 
often it is generated by LFSR but sometimes a 
pre-calculated PRBS stored in the Read-only 
memory is used ( Kenneth, 1993). In this type of 
scrambler, the effective length of the random 
sequence is limited by the frame length, which is 
normally much shorter than the period of the 
PRBS. It is possible to extend the length of the 
random sequence by adding frame numbers to 
the frame sync. Fig. 4 infers the Additive 
scrambler representation using USB 5 
polynomial. 

 

Figure 4: Additive scrambler representation 
using USB 5 polynomial 

 
Multiplicative Scrambler  
Multiplicative scramblers is also known as feed-
through, this is because they perform a 
multiplication of the input signal by the 
scrambler's transfer function in Z-space. They 
are discrete linear time-invariant systems 
(Kenneth, 1993). A multiplicative scrambler is 
recursive and a multiplicative descrambler is 
non-recursive. Multiplicative scramblers are also 
called as self-synchronizing, because it do not 
requires the frame synchronization. Fig. 5 shows 

the USB 5 implemented using Multiplicative 
scrambler.  
 
A single-bit error at the descrambler's input will 
result into X errors at its output, where X equals 
the number of the scrambler's feedback taps. 
This leads to error multiplication during 
descrambling. Additive scramblers must be reset 
by the frame sync; if this fails massive error 
propagation will result as a complete frame 
cannot be descrambled. 

 

Figure 5: Multiplicative scrambler representation 
using USB 5 polynomial 
 
Simulation Results and Discussion  
To analyze the different LFSR representations, 
various polynomials are considered. RTL code is 
verified and synthesized using Synopsys VCS 
and Cadence RTL compiler targeted to 
UMC90nm CMOS technology. The design is 
synthesized for various polynomials ranging 
from 5 to 32 bits. Figure 6 shows the simulation 
result for Fibonacci 32 models. 

  

 

Figure 6: Waveform for Fibonacci 32 using CRC 
model 
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After the simulation, various LFSRs have been 
synthesized using Cadence RTL compiler. The 
designs are synthesized for constant timing 
slack of about 4445ps, and the optimized area 
and power results are obtained. 
 
On comparing with all other models, Fibonacci 
produces multiple random bits. In addition the 
Fibonacci configuration can be extended without 
suffering the number of taps. On the other hand, 
other models form cannot be extended. Fig. 7 
shows the area report for the Fibonacci 32 bit, 
the total area of about 1206 is obtained and the 
optimization status produces 1174 total cell 
area. The Fig. 8 shows the power report for 
Fibonacci 32bit.  
 
Table 2 shows the area and power comparison 
report for implementation LFSR model for 
various 32 bit polynomials. 
 

 

Figure 7: Area report 

 

 

Figure 8: Power report 

 

 

 

 

 

 

Table 2. Area and power comparison 

LFSR Models 
(32 Bit) 

Area (mm2) Power(nW) 

CRC 1295 273761.655 
Galois 1177 265681.356 
Fibonacci 1174 263208.093 
Additive 
Scrambler 

1350 283458.98 

Multiplicative 
Scrambler 

1357 299785.786 

 

After the successful synthesis the physical 
design is created using the cadence encounter. 
The physical design involves the floor planning, 
routing and generating a GDS II file. Generated 
netlist from the compiler is imported into 
cadence encounter. After loading corresponding 
LEF files and technology libraries, an automated 
floor plan is done with the suitable ratios. 
 
The core die is surrounded by power rings (VDD 
and VSS) after the floor planning. Furthermore 
the horizontal and vertical power stripes across 
the die are given. Now the design macros are 
placed across the die so that optimum design is 
achieved. 
 

 

Figure 9: Pre-CTS Timing report 
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Further, the clock tree synthesis (CTS) is done 
to minimize skew and insertion delay. Pre-CTS 
and Post-CTS for both setup and hold mode 
was carried out. Additionaly optimization is 
carried out in case of negative slack. Figure 9 
and 10 shows the timing report for Pre-CTS and 
Post-CTS in setup mode. 
 

 

Figure 10: Post-CTS Timing report 
 
Once the clock tree synthesis is done the die is 
routed in optimum fashion. In Cadence 
Encounter, permanent routing is done by Nano-
Route. Special routing and nano routing are 
carried out with different metal layers. Figure 11 
and 12 show report for nano routing. 
 

 

Figure 11: Report for Nano routing 

Fig.13 represents the physical view for 32 bit 
Fibonacci model. Fibonacci model is 
implemented using External LFSR with several 
tapped cells whereas in Galois model, the LFSR 
implementation is based on internal LFSR 
(Burton, 1999). However, Galois’s model also 
produces reduced power and area for USB-5 
and CRC-16-IBM.  
 
On comparing the area and power of all the 
LFSR implementations, the basic CRC model 
produces the increased power and area for all 
the standard polynomials (Vikas and Pradeep, 
2013). This is due the fact that, it grows linearly 
with a higher scaling factor. Moreover, the 
additive scramblers have worse randomness 
compared to multiplicative scramblers when the 
length is short. The scrambler is an additive type 
of scrambler in contrast to a multiplicative type 
of scrambler. However, this is typically not a 
concern for the lengths of data that storage 
systems typically deal with (e.g., 2K, 4K, etc.). 
And unlike multiplicative scramblers, additive 
scramblers can be implemented in parallel but 
increase in area and power compared to 
Fibonacci and Galois’s model. 
 

 

Figure 12: Routing report 
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Figure13: Physical view of Fibonacci 32 bit 
 

Conclusion  
Based on the whole performance, Fibonacci 
produces significant power and area with the 
constant timing slack of 4445ps. When 
compared to CRC, Galois, Additive scrambler 
and Multiplicative scrambler, Fibonacci model is 
more efficient. Moreover, the Fibonacci 
configuration can be extended without suffering 
the number of taps. On the other hand, other 
models cannot be extended. 
In general, Galois’s model offers more efficiency 
than Fibonacci form if it handles on LFSR with 
many taps. In each case, Fibonacci 
representation is simpler, especially with regard 
to the computation of the initial loading of the 
register. Moreover, in all standard polynomial 
Fibonacci circuitry produces less power and 
area and also produces multiple random bits. 
The implemented model can be used in error 
detection and error correction techniques to 
prevent from Single event upset (SEU), which is 
caused due to radiation into the environment.  
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