
56

Full Length Research Paper

Application Specific Integrated Circuit Implementation of Various Linear Feedback Shift Register

Models

C.Nithiya1, S.Savarirani2 and S.Ramasamy3

1Post-graduate Student, RMKEC, Email: nithiyalingamvlsi@gmail.com
2Assistant Professor, RMD Engineering College, Email: savarirani@gmail.com
3Professor Electrical, College of Electrical and Mechanical Engineering, Addis Ababa Science and
Technology University, Kilinto, Addis Ababa, Email: rams@aastu.edu.et

Received: 16 March, 2017; Accepted: 13 June, 2017; Published: 26 June, 2017

ABSTRACT

In many electronic devices, linear feedback shift register (LFSR) is used for generating

pseudo-random numbers, pseudo-noise sequences and fast digital counters. So for high

performance applications LFSR should generate efficient sequences. The efficient

sequences can be generated in so many methods. The aim of the paper is to compare

various LFSR implementations in the standard polynomials. The practical guidelines to

choose the optimum LFSR design for pseudo-random generator was provided. The

comparison of various LFSR implementations in different polynomial was analyzed. The

design was simulated and synthesized using synopsys verilog compiler simulator and

cadence register transfer language compiler and cadence encounter tool was used for

application specific integrated circuit implementation. On comparing with different LFSR

implementation, the Fibonacci model offer significant advantage in terms of minimum

power and area.

Keywords: Additive scrambler, Cyclic Redundancy Code, Fibonacci, Galois, Linear Feedback
Shift Register, Multiplicative Scrambler.

Corresponding Author Address: Email: savarirani@gmail.com

Author(s) agree that this article remain permanently open access

Journal of Equity for Science and Sustainable Development

 Vol. 1(1), pp. 56-62, June 2017
Copyright © 2017
http://www.mwu.edu.et
Email: jessd@mwu.edu.et

 J. Equity for Sci. & Sust. Dev.

57

Introduction
An LFSR is a shift register whose input bit is
driven by the XOR of some bits of the overall
shift register value (Koopman and Chakravarty,
2004). The initial value of the LFSR is called the
seed, because the operation of the register is
deterministic, the stream of values produced by
the register is completely determined by its
current (or previous) state. Likewise, the register
has a finite number of possible states; it must
eventually enter a repeating cycle. However, an
LFSR with a well-chosen feedback function can
produce a sequence of bits, which appears
random and, which has a very long cycle (Martin
and Steve, 2011). The aim of the paper is to
compare various LFSR implementations in the
standard polynomials like USB-5, CRC-16-IBM
and CRC-32. The analysis is based upon the
product of power and area (P-A).

Selection of Polynomial
The selection of polynomial determines the size
and the taps of the shift register.

CRC-5-USB
5-bit CRC polynomial is used for providing error
detection for Universal Serial Bus (USB) tokens
and by an ITU standard for telecommunication
systems (Koopman and Chakravarty, 2004). The
USB 5-bit CRC standard, “USB-5,” is a
hexadecimal value 0x12 = x^5 + x^3 + 1. This
polynomial is used by USB to protect data words
of length 11 bits. USB-5 is optimal for 11-bit
messages, and is nearly optimal for longer data
word lengths. It is, however, not necessarily a
good choice for data words sized 10 and lower,
because it is a full bit of HD worse than the
bound.

CRC-16-IBM
The CRC-16-IBM is represented as x^16+x^15+
x^2+1 and its hexadecimal value is 0xC002

(Peter, 2015). All single and double-bit errors
can be detected using this type CRC and
ensures detection of 99.998% of all possible
errors. This level of detection is considered
sufficient for data transmission blocks of 4
kilobytes or less.

CRC-32
Accidental data changes can be detected using
CRC-32. These polynomials are commonly
used in networks and storage devices
(Koopman, 2002). The purpose of this algorithm
is not only focused to protect against
intentionally changes, but also to catch
accidental changes like network errors, disks
write errors, etc. The emphasis of this algorithm
is those more on speed than on security. The
hexadecimal value for CRC-32 is 0x82608EDB
and its polynomial representation is:

x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+
x^8+x^7+x^5+x^4+x^2+x^1+1.

Based on the above case study, each
polynomial has specific problems. One problem
is that some polynomials provide very poor error
detection capabilities. A secondly even a good
polynomial will go wrong when misused for
messages of a various lengths.

Table 1 shows the uses and representation of
polynomials. Therefore, selection of a good
polynomial must not only involve on the size, but
also the size of the data word. Moreover, many
commonly used polynomials are poorly suited to
some other applications. Therefore, suitable
polynomial for each application has to be
chosen.

Table 1.Uses and representation of polynomial

 Nithiya et.al., 2017

58

Mehods of LFSR Implementation

CRC
Cyclic redundancy check (CRC) is an error
detecting code, which is used to detect
correction in the block of transmitted data or
stored data. The linear feedback shift register
(LFSR) is the generic inexpensive hardware
used for the CRC, which assumes serial data
input. The used polynomial determines the
capability of the error detection. The
performance of the polynomial is affected by the
data, its length as well as the anticipated error
patterns (Martin and Steve, 2011)). Different
applications might favor different polynomials.

The register needs to be cleared initially in order
to obtain the CRC. After the injection of the
message and additional zeros, the specific CRC
will be hold by the register. The same procedure
can be applied at the receiver end to verify the
received message with its appended CRC. The
only difference is that the CRC will be shifted
into the circuit instead of the zeros. The register
finally becomes zero, if no error has been
detected. Fig. 1 shows the CRC representation
using USB 5 polynomial.

Figure 1: CRC representation using USB 5
polynomial

Galois Model
In the Galois model, bits that are not taps are
shifted one position to the right unchanged,
when the system is clocked. The taps and
output are XOR'd before they are stored in the
next position [5]. The new output bit is the input
to the next bit. Due to this when the output bit is
zero all the bits in the register shift to the right
unchanged, and the input bit becomes zero.
When the output bit is one, the bits in the tap
positions all flip and then the entire register is
shifted to the right and the input bit becomes 1.
Fig. 2 infers the USB 5 polynomial
implementation using Galois’s model.

Figure 2: Galois representation using USB 5
polynomial

Fibonacci Model
Fig. 3 shows that the LFSR in the Fibonacci
configuration has several been tapped cells
(Pritish and Sadawarte, 2015). The contents of
the tapped cells are added, and the sum
(modulo 2) is returned to the first cell of the shift
register for a clock cycle. In Fibonacci model the
corresponding connection polynomial is
irreducible.

Name

Uses

Polynomial Representation

Normal Reversed
Reversed
Reciprocal

CRC -5-USB USB token packets 0x05 0x14 0x12

CRC-16-IBM

Bisync, Modbus, USB 0x8005 0xA001 0xC002

CRC-32
HDLC, ANSI X3.66, ITU-T
V.42, Ethernet, Serial ATA

0x04C11DB7 0xEDB88320 0x82608EDB

 J. Equity for Sci. & Sust. Dev.

59

Figure 3: Fibonacci representation using USB 5
polynomial

Additive Scrambler
Additive scramblers are also referred to be as
synchronous. It transforms the input data stream
by applying a pseudo-random binary sequence
(PRBS). It follows modulo-two addition. More
often it is generated by LFSR but sometimes a
pre-calculated PRBS stored in the Read-only
memory is used (Kenneth, 1993). In this type of
scrambler, the effective length of the random
sequence is limited by the frame length, which is
normally much shorter than the period of the
PRBS. It is possible to extend the length of the
random sequence by adding frame numbers to
the frame sync. Fig. 4 infers the Additive
scrambler representation using USB 5
polynomial.

Figure 4: Additive scrambler representation
using USB 5 polynomial

Multiplicative Scrambler
Multiplicative scramblers is also known as feed-
through, this is because they perform a
multiplication of the input signal by the
scrambler's transfer function in Z-space. They
are discrete linear time-invariant systems
(Kenneth, 1993). A multiplicative scrambler is
recursive and a multiplicative descrambler is
non-recursive. Multiplicative scramblers are also
called as self-synchronizing, because it do not
requires the frame synchronization. Fig. 5 shows

the USB 5 implemented using Multiplicative
scrambler.

A single-bit error at the descrambler's input will
result into X errors at its output, where X equals
the number of the scrambler's feedback taps.
This leads to error multiplication during
descrambling. Additive scramblers must be reset
by the frame sync; if this fails massive error
propagation will result as a complete frame
cannot be descrambled.

Figure 5: Multiplicative scrambler representation
using USB 5 polynomial

Simulation Results and Discussion
To analyze the different LFSR representations,
various polynomials are considered. RTL code is
verified and synthesized using Synopsys VCS
and Cadence RTL compiler targeted to
UMC90nm CMOS technology. The design is
synthesized for various polynomials ranging
from 5 to 32 bits. Figure 6 shows the simulation
result for Fibonacci 32 models.

Figure 6: Waveform for Fibonacci 32 using CRC
model

 Nithiya et.al., 2017

60

After the simulation, various LFSRs have been
synthesized using Cadence RTL compiler. The
designs are synthesized for constant timing
slack of about 4445ps, and the optimized area
and power results are obtained.

On comparing with all other models, Fibonacci
produces multiple random bits. In addition the
Fibonacci configuration can be extended without
suffering the number of taps. On the other hand,
other models form cannot be extended. Fig. 7
shows the area report for the Fibonacci 32 bit,
the total area of about 1206 is obtained and the
optimization status produces 1174 total cell
area. The Fig. 8 shows the power report for
Fibonacci 32bit.

Table 2 shows the area and power comparison
report for implementation LFSR model for
various 32 bit polynomials.

Figure 7: Area report

Figure 8: Power report

Table 2. Area and power comparison

LFSR Models
(32 Bit)

Area (mm2) Power(nW)

CRC 1295 273761.655
Galois 1177 265681.356
Fibonacci 1174 263208.093
Additive
Scrambler

1350 283458.98

Multiplicative
Scrambler

1357 299785.786

After the successful synthesis the physical
design is created using the cadence encounter.
The physical design involves the floor planning,
routing and generating a GDS II file. Generated
netlist from the compiler is imported into
cadence encounter. After loading corresponding
LEF files and technology libraries, an automated
floor plan is done with the suitable ratios.

The core die is surrounded by power rings (VDD
and VSS) after the floor planning. Furthermore
the horizontal and vertical power stripes across
the die are given. Now the design macros are
placed across the die so that optimum design is
achieved.

Figure 9: Pre-CTS Timing report

 J. Equity for Sci. & Sust. Dev.

61

Further, the clock tree synthesis (CTS) is done
to minimize skew and insertion delay. Pre-CTS
and Post-CTS for both setup and hold mode
was carried out. Additionaly optimization is
carried out in case of negative slack. Figure 9
and 10 shows the timing report for Pre-CTS and
Post-CTS in setup mode.

Figure 10: Post-CTS Timing report

Once the clock tree synthesis is done the die is
routed in optimum fashion. In Cadence
Encounter, permanent routing is done by Nano-
Route. Special routing and nano routing are
carried out with different metal layers. Figure 11
and 12 show report for nano routing.

Figure 11: Report for Nano routing

Fig.13 represents the physical view for 32 bit
Fibonacci model. Fibonacci model is
implemented using External LFSR with several
tapped cells whereas in Galois model, the LFSR
implementation is based on internal LFSR
(Burton, 1999). However, Galois’s model also
produces reduced power and area for USB-5
and CRC-16-IBM.

On comparing the area and power of all the
LFSR implementations, the basic CRC model
produces the increased power and area for all
the standard polynomials (Vikas and Pradeep,
2013). This is due the fact that, it grows linearly
with a higher scaling factor. Moreover, the
additive scramblers have worse randomness
compared to multiplicative scramblers when the
length is short. The scrambler is an additive type
of scrambler in contrast to a multiplicative type
of scrambler. However, this is typically not a
concern for the lengths of data that storage
systems typically deal with (e.g., 2K, 4K, etc.).
And unlike multiplicative scramblers, additive
scramblers can be implemented in parallel but
increase in area and power compared to
Fibonacci and Galois’s model.

Figure 12: Routing report

 Nithiya et.al., 2017

62

Figure13: Physical view of Fibonacci 32 bit

Conclusion
Based on the whole performance, Fibonacci
produces significant power and area with the
constant timing slack of 4445ps. When
compared to CRC, Galois, Additive scrambler
and Multiplicative scrambler, Fibonacci model is
more efficient. Moreover, the Fibonacci
configuration can be extended without suffering
the number of taps. On the other hand, other
models cannot be extended.
In general, Galois’s model offers more efficiency
than Fibonacci form if it handles on LFSR with
many taps. In each case, Fibonacci
representation is simpler, especially with regard
to the computation of the initial loading of the
register. Moreover, in all standard polynomial
Fibonacci circuitry produces less power and
area and also produces multiple random bits.
The implemented model can be used in error
detection and error correction techniques to
prevent from Single event upset (SEU), which is
caused due to radiation into the environment.

Acknowledgement

Thanks to the College of Electrical and
Mechanical Engineering, AASTU for extending
library support and to validate our idea
successfully.

Conflict of Interest

The authors declared that there is no conflict of

interst regading to this paper.

 References

Burton R. (1999). Lecture notes on Cryptography.
http://cs.miami.edu/home/burt/learning/Csc59
9.092/docs/Cryptolecture3fullpage.pdf

Kenneth S. (1993). Scrambler/descrambler
system for data transmission. U.S. Patent 1-5

Koopman P. (2002). 32 bit cyclic code
redundancy code for internet application.
Proceedings of the international conference
on Dependable Computer and Networks,459-
472.

Koopman P. and Chakravarty T. (2004). Cyclic
redundancy code (CRC) polynomial
selection for embedded networks.
Proceedings of Int. Conf. Depend. Syst. Netw.
145–154.

Martin G. and Steve B.F. (2011). A Novel
Programmable Parallel CRC Circuit,” IEEE
Trans. Very Large Scale Integr. Syst.,
19(10):1898-1902.

Peter S. (2015). Cyclic Redundancy Check.
http://www.stallinga.org/AcadActiv/Lectures/S
RT/Exercises/CRC%20(Wikipedia).pdf

Pritish A.D. and Sadawarte Y.A. (2015). Pseudo-
Random Number Generation by Fibonacci
and Galois LFSR Implemented on FPGA. Int.
J. Compu. Applic. (1) 1-3

Vikas S. and Pradeep K. (2013). Power Reduction
and Speed Augmentation in LFSR for
Improved Sequence Generator using Scaling
Principle and Transistor Stacking, IJARCSEE,
2(1):66-69

	Introduction
	Selection of Polynomial
	CRC-5-USB
	CRC-16-IBM
	CRC-32

	Mehods of LFSR Implementation
	CRC
	Galois Model
	Fibonacci Model
	Additive Scrambler
	Multiplicative Scrambler

	Simulation Results and Discussion
	Conclusion
	Acknowledgement
	Conflict of Interest
	 References

